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About this Lecture

This lecture introduces the potential outcomes framework

▶ This framework allows us to think about causal effects in a structured way
▶ We learn why counterfactuals are important but also difficult to

observe/construct
▶ We learn what biases can occur when we do not observe all confounders

One solution for causal inference: randomised experiments

▶ Under what conditions do they allow for the identification of a causal effect?
▶ How can a hypothetical experiment serve as a benchmark for other methods?
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Lingo and Notation

The lingo of causal inference is borrowed from medical trials

▶ treatment is the intervention/variable whose effect we are interested in
▶ treatment group is the group of units that receives the treatment
▶ control group is the group of units that does not receive the treatment or

receives a placebo
▶ outcome is the variable that is potentially affected by the treatment

We are after the causal effect: treatment (D) → outcome (Y )
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Resources

This lecture is based on

▶ Cunningham (2020), Chapter 4
▶ Angrist & Pischke (2009), Chapter 2

Find more about the course on the course page
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Causality
A common challenge in applied econometrics is to separate a causal effect from the
influence of third factors

We often have a good (theoretical) idea why D → Y

▶ but X is a confounding factor
▶ often the problem: we also have an idea what X could be. . .
▶ but cannot observe it (notation: u for “unobservable’ ’)
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Causality

Common challenge: selection into treatment
In microeconomics we learn
▶ people make rational choices. . .
▶ . . . as do firms
▶ . . . as do governments

Problem: we do not observe all the determinants of these choices (i.e. u)
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Causality

Examples for selection into treatment:

Going to the gym makes you healthier

▶ good reason to believe so
▶ but people who go to the gym are different from those who don’t
▶ observed correlation ̸= causation

Exporting boosts firm profitability

▶ good reason to believe so
▶ but exporters are different in many ways from non-exporters
▶ observed correlation ̸= causation
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Causality

Problem: it is not easy to account for all confounding factors

▶ because we know what they are but can’t observe them
▶ or because we don’t know what they are (e.g. “common shocks’ ’)

The burden of proof is on the researcher

▶ If you make a causal statement, you need to make a convincing case
▶ but causality cannot be proven without assumptions. . .
▶ . . . and these assumptions need to be believed
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The Potential Outcomes Framework
We will now focus on binary treatments

Some notation from experimental studies

▶ i is an index for the units in the population under study.

▶ Di is the treatment status:
▶ Di = 1 if unit i has been exposed to treatment,
▶ Di = 0 if unit i has not been exposed to treatment.

▶ Yi(Di) indicates the potential outcome according to treatment:
▶ Yi(1) ≡ Yi1 is the outcome in case of treatment,
▶ Yi(0) ≡ Yi0 is the outcome in case of no treatment.
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The Potential Outcomes Framework (Rubin, 1974)
The observed outcome is then

Yi =
{

Yi1 if Di = 1
Yi0 if Di = 0

Switching equation
= DiYi1 + (1 − Di)Yi0

= Yi0 + (Yi1 − Yi0)︸ ︷︷ ︸
treatment effect

Di

We are interested in the (individual) treatment effect ∆i = Yi1 − Yi0.
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The Fundamental Problem of Causal Inference

We cannot identify the individual treatment effect ∆i = Yi1 − Yi0

This is logically impossible

▶ we either observe that a unit was treated or not
▶ but never both treatment statuses at the same time
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Wanted: The Counterfactual

A critical ingredient to establish causality: the counterfactual

What would have happened to a unit if

▶ the treatment status D ∈ {0, 1} was different?
▶ or, if D is continuous, the treatment intensity was different?

For units that were treated, we want to know Yi0 | Di = 1. For units that were
untreated, we want to know Yi1 | Di = 0.

No counterfactual, no causal claim!
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Finding a Counterfactual: The Average Treatment Effect (ATE)

Problem: we cannot observe the counterfactual

▶ at the individual level, the counterfactual is entirely hypothetical

Statistical solution: Average Treatment Effect (ATE) for a random unit

E (∆i) = E (Yi1 − Yi0) = E (Yi1) − E (Yi0)

If a random unit was treated, the expected difference in their outcome is the ATE
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The Average Treatment Effect on the Treated (ATT)

The Average Treatment Effect on the Treated (ATT)

ATT = E (∆i |Di = 1) = E (Yi1 − Yi0|Di = 1)
= E (Yi1|Di = 1) − E (Yi0|Di = 1).

Interpretation: Average difference in potential outcomes for those who were treated

The ATT is useful for policy evaluation: take units who were treated and think what
their outcomes would be had they not been treated
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The Average Treatment Effect on the Untreated (ATU)

Similarly, we can define the Average Treatment Effect on the Untreated (ATU) as:

ATU = E (∆i |Di = 0) = E (Yi1 − Yi0|Di = 0)
= E (Yi1|Di = 0) − E (Yi0|Di = 0).

Interpretation: the average difference in potential outcomes for those who were
not treated

The ATU can (sometimes) be useful for policy evaluation: take units who were
untreated and think what their outcomes would be had they been treated
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Treatment Effects: Numerical Example

Person D PO Treated Y 1 PO Untreated Y 0 Causal Effect
1 1 80 60 20
2 1 75 70 5
3 0 70 60 10
4 1 85 80 5
5 0 75 70 5
6 0 80 80 0
7 0 90 100 -10
8 1 85 80 5

Here we observe the potential outcomes for each person. Some people are treated
(D = 1), some are not (D = 0).
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The Average Treatment Effect

Person D PO Treated Y 1 PO Untreated Y 0 Causal Effect
1 1 80 60 20
2 1 75 70 5
3 0 70 60 10
4 1 85 80 5
5 0 75 70 5
6 0 80 80 0
7 0 90 100 -10
8 1 85 80 5

The ATE is the average of the last column: ATE = 5
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The Average Treatment Effect on the Treated (ATT)

Person D PO Treated Y 1 PO Untreated Y 0 Causal Effect
1 1 80 60 20
2 1 75 70 5
3 0 70 60 10
4 1 85 80 5
5 0 75 70 5
6 0 80 80 0
7 0 90 100 -10
8 1 85 80 5

The ATT is the average causal effect of those who were treated (green cells):
ATT = 8.75
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The Average Treatment Effect on the Untreated (ATU)
Person D PO Treated Y 1 PO Untreated Y 0 Causal Effect

1 1 80 60 20
2 1 75 70 5
3 0 70 60 10
4 1 85 80 5
5 0 75 70 5
6 0 80 80 0
7 0 90 100 -10
8 1 85 80 5

The ATU is the average causal effect of the units who were not treated (green cells):
ATU = 1.25

Here we have ATT > ATE > ATU, which may indicate selection into treatment:
those who benefit most from the treatment are most likely to take it
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ATE/ATT/ATU: Which Parameter is most Relevant?
There is no clear answer to this question

ATE is the most general parameter

▶ what if we give the average person/firm/unit a treatment
▶ This is interesting for medical trials and for many policy questions

ATT is often interesting for policy evaluation

▶ take those who took up the policy
▶ what would have happened to them if they had not taken up the policy

ATU is sometimes interesting for policy evaluation

▶ We may be concerned about the people who did not take up the policy
▶ How would they be affected if they took up the policy

But: We need all three to interpret typical estimation results
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Comparison by Treatment Status
In many applications, we want to estimate the ATE or the ATT

But we only observe

▶ Whether a unit was treated or not
▶ The actual outcome of the unit

Solution (?): comparison of means/simple difference in outcomes, which can be
estimated from two samples of data (treatment and control group)

SDO = E (Yi |Di = 1) − E (Yi |Di = 0)
= 1

NT

∑
i

(yi | di = 1)︸ ︷︷ ︸
Treated units

− 1
NC

∑
i

(yi | di = 0)︸ ︷︷ ︸
"Control" units (untreated)
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Simple Difference in Outcomes (SDO)
Person D PO Treated Y 1 PO Untreated Y 0 Causal Effect

1 1 80 60 20
2 1 75 70 5
3 0 70 60 10
4 1 85 80 5
5 0 75 70 5
6 0 80 80 0
7 0 90 100 -10
8 1 85 80 5

We compare here the observed outcomes of the treated to the observed outcomes
of the untreated

SDO = 81.25 − 77.5 = 3.75
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Comparison by Treatment Status

Problem with SDO: treated and untreated units are not comparable

E (Yi |Di = 1) − E (Yi |Di = 0)
= E (Yi1|Di = 1) − E (Yi0|Di = 0)
= E (Yi1|Di = 1) − E (Yi0|Di = 1)︸ ︷︷ ︸

ATT

+ E (Yi0|Di = 1) − E (Yi0|Di = 0)︸ ︷︷ ︸
Selection bias

Selection bias: the potential outcomes would differ even if both groups were untreated

Note how we add and subtract E (Yi0|Di = 1) here
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Now Suppose We Want to Estimate the ATE

Note that we can write the ATE as: ATE = πATT + (1 − π)ATU

The simple difference in outcomes yields:

E (Yi |Di = 1) − E (Yi |Di = 0) = ATE
+ E (Yi0|Di = 1) − E (Yi0|Di = 0)︸ ︷︷ ︸

Selection bias
+ (1 − π) [ATT − ATU]︸ ︷︷ ︸

HTE Bias

Our estimate of the ATE is contaminated by two biases:

▶ selection bias
▶ heterogeneous treatment effects (HTE) bias
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Selection Bias: Genuine Difference between Treated and Untreated Units
Person D PO Treated Y 1 PO Untreated Y 0 Causal Effect

1 1 80 60 20
2 1 75 70 5
3 0 70 60 10
4 1 85 80 5
5 0 75 70 5
6 0 80 80 0
7 0 90 100 -10
8 1 85 80 5

The selection bias is the difference between the green and red cells.

In this case, E (Yi0|Di = 1) − E (Yi0|Di = 0) = 72.5 − 77.5 = −5

So in absence of the treatment, the untreated have more favorable outcomes than the
treated
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Selection Bias

Source: somewhere on X, before 2023
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Selection Bias: Genuine Difference between Treated and Untreated Units

The selection bias is E (Yi0|Di = 1) − E (Yi0|Di = 0)

This means that, even without the treatment, the two groups would have
different outcomes

Selection bias is very common! Whenever there is a confounder, we have selection
bias
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Heterogeneous Treatment Effects

HTE bias = (1 − π) [ATT − ATU]

Treatment effect may vary across units

▶ People who take the treatment may be different from those who do not
▶ People with stronger treatment effects may be more likely to take the

treatment

Heterogeneous treatment effects bias can even occur in a randomised experiment

▶ We can hardly ever enforce that people take the treatment
▶ Unlike in physics or chemistry, in the social sciences we can only encourage

people to take the treatment
▶ We speak here of imperfect compliance
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Heterogeneous Treatment Effects Bias

Source: Dall-E, OpenAI
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Heterogeneous Treatment Effects Bias
Person D PO Treated Y 1 PO Untreated Y 0 Causal Effect

1 1 80 60 20
2 1 75 70 5
3 0 70 60 10
4 1 85 80 5
5 0 75 70 5
6 0 80 80 0
7 0 90 100 -10
8 1 85 80 5

The heterogeneous treatment effects bias is the difference between the green and
red cells weighted by the probability of treatment

HTE bias = (1 − π) [ATT − ATU] = 0.5 × [8.75 − 1.25] = 3.75
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SDO vs. ATT

In our example, SDO = 3.75

SDO = ATT + Selection Bias
= 8.75 − 5 = 3.75

In our case, the SDO under-estimates the ATT by 5 because of selection bias.
Without the treatment, treated units have less favourable outcomes than untreated
units.
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SDO vs ATE

SDO = ATE + Selection Bias + HTE Bias
= 5 − 5 + 3.75
= 3.75

In our case, the SDO also under-estimates the ATE. This is the result of two biases
going in opposite directions. The overall bias is negative.
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Putting it all together

The previous slides have shown that

▶ a simple (a.k.a. naive) comparison of treated and untreated units yields a
biased estimate of the ATE and ATT

▶ It is not random whether a unit is treated or not or chooses to get treated or
not

▶ This choice leads to selection bias and heterogeneous treatment effects bias
▶ A randomised experiment can eliminate selection bias but not necessarily

the HTE bias
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So when Is the SDO Unbiased?

The SDO is unbiased (SDO = ATE ) under the Independence Assumption

(Y1, Y0) ⊥ D (1)

The potential outcomes are independent of the treatment

▶ Treated and untreated individuals have the same average potential outcomes
E (Y0) and E (Y1)

▶ I.e. they are statistically similar
▶ And no one selects into treatment because of their treatment effect
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So when Is the SDO Unbiased?
We can show that the selection bias and HTE bias are zero under the
independence assumption
The independence assumption implies

E
[
Y1 | D = 1

]
− E

[
Y1 | D = 0

]
= 0

E
[
Y0 | D = 1

]
− E

[
Y0 | D = 0

]︸ ︷︷ ︸
Selection bias

= 0

Independence also implies that ATU = ATT

ATT − ATU = E
[
Y1 | D = 1

]
− E

[
Y0 | D = 1

]
− E

[
Y1 | D = 0

]
+ E

[
Y0 | D = 0

]
= 0
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Implication for research practice:

We need to understand the sources of bias in our context

We cannot test directly for the presence of bias

▶ no matter how much big data enthusiasts make us believe that we can

We need to be humble about what parameters we can identify with our data -
Example: ATT does not suffer from HTE bias, but is it relevant?
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Comparison by Treatment Status

In most cases, we run regressions rather than comparing means

Yi = α + β Di + εi
= = =

E (Yi0) (Yi1 − Yi0) Yi0 − E (Yi0)

Take expectations conditional on Di :

E (Yi |Di = 1) = α + β + E (εi |Di = 1)
E (Yi |Di = 0) = α + E (εi |Di = 0)
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Comparison by Treatment Status
Your regression will estimate a coefficient β̂ that is a combination of a
treatment effect (ATE or ATT) plus a bias

The OLS estimate of β is

E (Yi |Di = 1) − E (Yi |Di = 0)
= β︸︷︷︸

Treatment Effect
+ E (εi |Di = 1) − E (εi |Di = 0)︸ ︷︷ ︸

bias
.

The RHS is either

▶ ATT + Selection Bias
▶ ATE + Selection Bias + HTE Bias
▶ Both are equivalent

We should always assume that the bias ̸= 0
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What if We Control for X

Person D Female (X) PO Treated Y 1 PO Untreated Y 0 Causal Effect
1 1 1 80 60 20
2 1 1 75 70 5
3 0 1 70 60 10
4 1 0 85 80 5
5 0 1 75 70 5
6 0 0 80 80 0
7 0 0 90 100 -10
8 1 0 85 80 5
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Controlling for X
If X is binary, we compare the outcomes conditional on X

This means that

▶ We compare the outcomes of treated and untreated units within each group
defined by X

▶ Our estimator is the weighted average of these differences

Consider p = Pr(x = 1) and q = Pr(x = 0), with p + q = 1

E (Yi |Di = 1, X ) − E (Yi |Di = 0, X )
= p [E (Yi1 | Di = 1, x = 1) − E (Yi1 | Di = 0, x = 1)]
+ q [E (Yi1 | Di = 1, x = 0) − E (Yi1 | Di = 0, x = 0)]
= p [ATTx=1 + E (Yi0 | Di = 1, x = 1) − E (Yi0 | Di = 0, x = 1)]
+ q [ATTx=0 + E (Yi0 | Di = 1, x = 0) − E (Yi0 | Di = 0, x = 0)]
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What if We Control for X
Suppose X is binary, for example male and female

Person D Female (X) PO Treated Y 1 PO Untreated Y 0 Causal Effect
1 1 1 80 60 20
2 1 1 75 70 5
3 0 1 70 60 10
4 1 0 85 80 5
5 0 1 75 70 5
6 0 0 80 80 0
7 0 0 90 100 -10
8 1 0 85 80 5

▶ SDOX=1 = 77.5 − 65 = 12.5
▶ SDOX=0 = 85 − 90 = −5
▶ SDO = 1

2 × 12.5 + 1
2 × (−5) = 3.75
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Controlling for X

In our example, E (D | X ) = E (D), i.e. D is independent of X

▶ This means that controlling for X does not affect the estimate of the SDO

But often, E (D | X ) ̸= E (D) because X is a confounder

▶ That’s exactly when we want to control for X
▶ If X is the only confounder, controlling for X eliminates the selection bias

We can identify the ATE under the Conditional Independence Assumption

(Y1, Y0) ⊥ D | X
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Randomised Experiments

Experiments provide a clean way to eliminate selection bias

Even if in most cases it is not possible to run experiments, a clean experiment
serves as the benchmark for all the methods in this course

Idea: the closer we get to the ideal experimental setting, the closer we get to
estimating a causal effect
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Randomised Experiments

Basic idea: randomly assign treatment across units

Two conditions have to be fulfilled:

▶ assignment to treatment and control group is random
▶ there is full compliance with the treatment (plus: no attrition)

In that case, the treatment and control group are statistically identical
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Randomised Experiments

Formally (T: treatment group, C: control group)

E{Yi0|i ∈ C} = E{Yi0|i ∈ T}

and
E{Yi1|i ∈ C} = E{Yi1|i ∈ T}.

▶ . . . both groups have the same potential outcomes in expectation
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Randomised Experiments

Therefore, we can obtain an unbiased and consistent estimate of the ATE

E (∆i) = E (Yi1 − Yi0) = E{Yi1|i ∈ T} − E{Yi0|i ∈ C}.

⇒ comparison of means is meaningful (causal effect in expectation)

⇒ Randomisation solves the fundamental problem of causal inference
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Randomised Experiments
But what if not everyone complies with the treatment?

Examples

▶ Not every job seeker who is offered training takes part
▶ Not every person eligible for a medical card/social benefits/etc applies

E{Yi1|i ∈ T} − E{Yi0|i ∈ C} ≠ ATE

As we will learn later in the course, all is not lost

▶ The resulting treatment effect can still be meaningful
▶ . . . as long as treatment is random
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Randomised Experiments

An important assumption underlying causal inference in experiments

SUTVA: Stable Unit Treatment Value Assumption

In plain English

▶ treatment of one unit must not affect the potential outcomes of another
▶ i.e. no spillovers, general equilibrium effects, etc
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Randomised Experiments

SUTVA is an untestable assumption

Examples for violations:

▶ information leaks from treatment to control group
▶ large-scale job training programs ⇒ GE effects
▶ health interventions (capacity constraints in medical facilities)

Implications:

▶ One reason why small interventions don’t scale up
▶ Important to choose the right control group
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Cookbook for Analyzing a Randomised Experiment
1) Explain experimental design in detail, in particular

▶ How was the randomisation carried out
▶ Discuss compliance (or likely non-compliance)
▶ Argue why SUTVA holds

2) Show balancing tests based on pre-treatment characteristics

▶ Do treatment and control group differ before the experiment?
▶ Use pre-treatment outcomes if possible
▶ Use other pre-treatment characteristics that may predict selection into treatment
▶ If you use regression analysis in the paper, regress the pre-treatment x on the

treatment
▶ Never use post-treatment outcomes (NEVER EVER!)

xi = δ1 + δ2Di + ηi
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Cookbook for Analyzing a Randomised Experiment

3) Show and discuss results

▶ Compare means across treatment and control groups
▶ Add pre-treatment characteristics Xi as controls

yi = α + βDi + Xi γ + ui

Why add controls?

▶ Additional test if randomisation worked (β should not change)
▶ Estimates become more precise (less noise in the model ⇒ lower SE)
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Example: Tennessee STAR Experiment

Research Question: does class size matter to student learning? (Krueger, 1999)

Implemented on cohort of kindergartners (i.e. senior infants) in 1985/86 in Tennessee.

Lasted 4 years, then everyone went back to regular size class.

Three treatments

1. Small class 13-17
2. Regular class 22-25
3. Regular class with Aide
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Example: Tennessee STAR Experiment

Schools had to have at least 3 classes to participate.

Entering cohort randomly assigned to class type. Teachers also randomly assigned.

I.e. randomisation was carried out within schools

Test scores measured towards end of each school year in March.
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Example: Tennessee STAR Experiment
Balancing tests: do treatment and control groups have the same pre-treatment
characteristics?

▶ They are similar in age, race and SES
▶ Attrition rates are similar
▶ Treatment and outcomes differ
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Example: Tennessee STAR Experiment

Krueger (1999) uses a regression to analyse the experiment

The most comprehensive specification includes pre-treatment characteristics and
school fixed effects

yis = α + βDis + X ′
isγ + δs + uis

Why include fixed effects?

▶ Randomisation was carried out within schools
▶ Children in different school types may react differently to the treatment
▶ The FE estimator compares children within the same school
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Example: Tennessee STAR Experiment
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Example: Tennessee STAR Experiment

Result: smaller classes are more effective

Experimental design appears valid

▶ Balancing tables point to clean randomisation
▶ Estimates not affected by controls for pre-treatment characteristics

The same cookbook approach can be used for non-experimental studies
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Discrete vs. continuous treatment

So far, we discussed experiments with a discrete treatment

The same assumptions apply to experiments with a continuous treatment

▶ The treatment intensity varies across units
▶ treatment intensity is randomly assigned

Possibilites for researchers:

▶ Discretise and compare mean outcomes (e.g. above/below median)
▶ Estimate marginal effect in a regression
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Randomised Experiments as Templates
Randomised experiments are often difficult or impossible to conduct

But they serve as a template for estimating causal effects in non-experimental
settings

Any study that claims to estimate a causal effect should

▶ explain what the treatment is
▶ and under what conditions the assignment of the treatment (intensity) is as good

as random
▶ . . . even if the world is not perfect, there is no harm thinking about the perfect

My advice (after 100+ referee reports, several published papers and many rejections):
ignore the experimental template at your own peril
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Appendix
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Group Work I

Suppose you want to study the impact of medical cards on health outcomes in Ireland.
Medical cards are means-tested and given to people with low income. Card holders can
access medical care for free. You have access to administrative data covering all adults
in Ireland, including information on whether they ever held a medical card and their
health outcomes.

Tasks:

1. Explain: What is the treatment in this case?
2. Intuitively, explain what the ATE, ATU, ATT are. Which of these parameters is

most relevant in a policy evaluation in this context?
3. What are potential sources of bias here?
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Group Work II

Consider the independence assumption

(Y1, Y0) ⊥ D

Evaluate the following statements (i.e. are they implied by the independence
assumption)?

1. E [Y1 | D = 1] − E [Y0 | D = 0] = 0
2. E [Y1 | D = 1] − E [Y0 | D = 1] = 0
3. E [Y1 | D = 1] − E [Y1 | D = 0] = 0
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Group Work III

Suppose you want to study the impact of local police presence on crime in Dublin.

Questions:

▶ What would be the ideal experiment to run here?
▶ Why may this experiment not be feasible?
▶ If you can’t run an experiment, what else could you do to get at the causal effect?
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Derivation of SDO Decomposition

E (Y 1 | D = 1) − E (Y 0 | D = 0)
= E (Y 1 | D = 1) − E (Y 1 | D = 0) + E (Y 1 | D = 0) − E (Y 0 | D = 0)
= E (Y 1 | D = 1) − E (Y 1 | D = 0)︸ ︷︷ ︸

ATT

+ E (Y 1 | D = 0) − E (Y 0 | D = 0)︸ ︷︷ ︸
Selection Bias
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Derivation of SDO Decomposition
Now consider ATE = πATT + (1 − π)ATU

ATE = πATT + (1 − π)ATU
= πATT + ATT − ATT + (1 − π)ATU

Re-arranging yields

ATT = ATE + (1 − π)ATT − (1 − π)ATU
= ATE + (1 − π)[ATT − ATU]
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Derivation of SDO Decomposition

We can plug this into the SDO decomposition and get

E (Y 1 | D = 1) − E (Y 0 | D = 0)
= ATE
+ E (Y 1 | D = 0) − E (Y 0 | D = 0)︸ ︷︷ ︸

Selection Bias

+ (1 − π)[ATT − ATU]︸ ︷︷ ︸
HTE Bias
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